A human 3' miR-499 mutation alters cardiac mRNA targeting and function.
نویسندگان
چکیده
RATIONALE MyomiRs miR-499, miR-208a and miR-208b direct cardiac myosin gene expression. Sequence complementarity between miRs and their mRNA targets determines miR effects, but the functional consequences of human myomiR sequence variants are unknown. OBJECTIVE To identify and investigate mutations in human myomiRs in order to better understand how and to what extent naturally-occurring sequence variation can impact miR-mRNA targeting and end-organ function. METHODS AND RESULTS Screening of ≈2,600 individual DNAs for myomiR sequence variants identified a rare mutation of miR-499, u17c in the 3' end, well outside the seed region thought to determine target recognition. In vitro luciferase reporter analysis showed that the 3' miR-499 mutation altered suppression of a subset of artificial and natural mRNA targets. Cardiac-specific transgenic expression was used to compare consequences of wild-type and mutant miR-499. Both wild-type and mutant miR-499 induced heart failure in mice, but miR-499 c17 misdirected recruitment of a subset of miR-499 target mRNAs to cardiomyocyte RNA-induced silencing complexes, altering steady-state cardiac mRNA and protein make-up and favorably impacting cardiac function. In vitro analysis of miR-499 target site mutations and modeling of binding energies revealed abnormal miR-mRNA duplex configurations induced by the c17 mutation. CONCLUSIONS A naturally occurring miR-499 mutation outside the critical seed sequence modifies mRNA targeting and end-organ function. This first description of in vivo effects from a natural human miR mutation outside the seed sequence supports comprehensive studies of individual phenotypes or disease-modification conferred by miR mutations.
منابع مشابه
Direct and indirect involvement of microRNA-499 in clinical and experimental cardiomyopathy.
RATIONALE MicroRNA-499 and other members of the myomiR family regulate myosin isoforms in pressure-overload hypertrophy. miR-499 expression varies in human disease, but results of mouse cardiac miR-499 overexpression are inconsistent, either protecting against ischemic damage or aggravating cardiomyopathy after pressure overload. Likewise, there is disagreement over direct and indirect cardiac ...
متن کاملMiR-499-5p protects cardiomyocytes against ischaemic injury via anti-apoptosis by targeting PDCD4
Recent studies have reported that miRNAs might play critical roles in acute myocardial infarction (AMI). The objective of this study is to investigate the role of miR-499-5p in AMI and its potential molecular mechanisms. The expression level of MiR-499-5p was remarkably decreased in the infarcted myocardial tissues and in the cultured neonatal rat cardiomyocytes induced by hypoxia. Overexpressi...
متن کاملElevated miR-499 Levels Blunt the Cardiac Stress Response
BACKGROUND The heart responds to myriad stresses by well-described transcriptional responses that involve long-term changes in gene expression as well as more immediate, transient adaptations. MicroRNAs quantitatively regulate mRNAs and thus may affect the cardiac transcriptional output and cardiac function. Here we investigate miR-499, a microRNA embedded within a ventricular-specific myosin h...
متن کاملHeart Failure Human Cardiac Stem Cell Differentiation Is Regulated by a Mircrine Mechanism
Background—Cardiac stem cells (CSCs) delivered to the infarcted heart generate a large number of small fetal-neonatal cardiomyocytes that fail to acquire the differentiated phenotype. However, the interaction of CSCs with postmitotic myocytes results in the formation of cells with adult characteristics. Methods and Results—On the basis of results of in vitro and in vivo assays, we report that t...
متن کاملIschemic Postconditioning-Regulated miR-499 Protects the Rat Heart Against Ischemia/Reperfusion Injury by Inhibiting Apoptosis through PDCD4.
BACKGROUND Here, we determined miR-499 involvement in the protective effect of ischemic postconditioning (IPC) against myocardial ischemia/reperfusion (I/R) injury and identified the underlying mechanisms. METHODS To investigate the cardioprotective effect of IPC-induced miR-499, rats were divided into the following five groups: sham, I/R, IPC, IPC + scramble, and IPC + antagomiR-499. Hemodyn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 110 7 شماره
صفحات -
تاریخ انتشار 2012